October 18th, 2023 Online at 8:00am PT / 3:00pm UTC (+ meetup at IEEE VIS 2023 in Melbourne, Australia)
The role of visualization in artificial intelligence (AI) gained significant attention in recent years. With the growing complexity of AI models, the critical need for understanding their inner-workings has increased. Visualization is potentially a powerful technique to fill such a critical need.
The goal of this workshop is to initiate a call for "explainables" / "explorables" that explain how AI techniques work using visualization. We believe the VIS community can leverage their expertise in creating visual narratives to bring new insight into the often obfuscated complexity of AI systems.
July 30, 2023, anywhere: Submission Deadline September 10, 2023: Author Notification October 1, 2023: Camera Ready Deadline October 18th, 2023 at 8:00am PT / 3:00pm UTC: Workshop Online October xx, 2023: (optional) Meetup in Melbourne at VIS 2023
All times in PT (UTC -8) on Wednesday, October 18, 2023.
→ VISxAI is free to attend! Join us via Zoom: VISxAI 2023 Zoom link.
→ Add VISxAI 2023 to your calendar!
→ If you plan to attend the in-person VISxAI meetup at IEEE VIS (Thursday, October 26 at 12:00pm), please fill out this form.
8:00 | Welcome from the Organizers |
8:00 -- 8:30 | Session I
Conformal Prediction: A Visual Introduction -- Mihir Agarwal, Lalit Chandra Routhu, Zeel B Patel, Nipun Batra Understanding and Comparing Multi-Modal Models -- Christina Humer, Vidya Prasad, Marc Streit, Hendrik Strobelt Neighborhood traces: When your neighborhood changes one layer at a time -- Moritz Dück, Johannes Knittel, Hendrik Strobelt, Mennatallah El-Assady Of Deadly Skullcaps and Amethyst Deceivers: Reflections on a Transdisciplinary Study on XAI and Trust -- Andreas Hinterreiter, Christina Humer, Benedikt Leichtmann, Martina Mara, Marc Streit VisForPINNs: Visualization for Understanding Physics Informed Neural Networks -- Viny Saajan Victor, Manuel Ettmüller, Andre Schmeißer, Heike Leitte, Simone Gramsch |
8:30 -- 8:45 | Break |
8:45 -- 9:15 | Session II
Do Machine Learning Models Memorize or Generalize? -- Adam Pearce, Asma Ghandeharioun, Nada Hussein, Nithum Thain, Martin Wattenberg, Lucas Dixon Diffusion Explainer: Visual Explanation for Text-to-image Stable Diffusion -- Seongmin Lee, Benjamin Hoover, Hendrik Strobelt, Zijie J. Wang, ShengYun Peng, Austin P Wright, Kevin Li, Haoyang Yang. Haekyu Park, Duen Horng Chau Learning What's in a Name with Graphical Models -- Vu Luong, Justin S Selig Neural Networks: A Visual Introduction -- Jared Wilber PAC Learning Or: Why We Should (and Shouldn't) Trust Machine Learning -- Dylan Cashman |
9:15 -- 9:30 | Break |
9:30 -- 10:30 | Keynote: Matthew Conlen - @mathisonian
Beyond Notebooks: Computational Tools for Disseminating Research and Ideas Computational notebooks and interactive essays are both powerful mediums for sharing research; however, designers often mistakenly assume that they share similar design goals and constraints. This talk provides a critical examination of the differences between these two formats, highlighting the potential for interactive essays to move beyond the linear notebook format through a survey of influential works in experimental literature, cinema, graphic design, and game design. Recent research aids authors in crafting interactive essays, leveraging a variety of computational techniques including programming language design, structured text editing, computer graphics, and AR/VR. |
10:30am | Closing |
Explainable submissions (e.g., interactive articles, markup, and notebooks) are the core element of the workshop, as this workshop aims to be a platform for explanatory visualizations focusing on AI techniques.
Authors have the freedom to use whatever templates and formats they like. However, the narrative has to be visual and interactive, and walk readers through a keen understanding on the ML technique or application. Authors may wish to write a Distill-style blog post (format), interactive Idyll markup, or a Jupyter or Observable notebook that integrates code, text, and visualization to tell the story.
Here are a few examples of visual explanations of AI methods in these types of formats:
While these examples are informative and excellent, we hope the Visualization & ML community will think about ways to creatively expand on such foundational work to explain AI methods using novel interactions and visualizations often present at IEEE VIS. Please contact us, if you want to submit a original work in another format. Email: orga.visxai (at) gmail.com.
Our workshop will be hybrid. We encourage and accept submissions for those who cannot travel to VIS in person.
Note: We also accept more traditional papers that accompany an explainable. Be aware that we require that the explainable must stand on its own. The reviewers will evaluate the explainable (and might chose to ignore the paper).
Alex Bäuerle - Independent Researcher
Angie Boggust - Massachusetts Institute of Technology
Fred Hohman - Apple
Ian Johnson - Latent Interfaces
Zijie Jay Wang - Georgia Tech
Adam Perer - Carnegie Mellon University
Hendrik Strobelt - MIT-IBM Watson AI Lab
Mennatallah El-Assady - ETH AI Center
Jane Adams
Marco Angelini
Donald Bertucci
Ángel Cabrera
Jaegul Choo
Brandon Duderstadt
Angus Forbes
Iris Howley
Andriy Mulyar
Rita Sevastjanova
Arjun Srinivasan
Yang Wang
James Wexler